什么是协议栈? 用户态协议栈设计(udp协议栈)

news/2024/5/18 11:52:42 标签: tcp/ip, udp, 网络, c++, linux, 网络协议

什么是协议栈呢?

(协议栈(Protocol Stack)是计算机网络和通信系统中的一个重要概念,它指的是一组协议层的层次结构,这些协议层一起协同工作,以便在不同计算机或设备之间实现数据通信和交换。每个协议层都有特定的功能和责任,从物理层到应用层,每一层都在不同的抽象级别上处理数据和通信任务)友情提示,请阅读代码的注释

通过mmap可以将网卡里的数据映射到内存中去
这里是零拷贝,指的是cpu指令没有参与,但并不是没有拷贝,这是一种DMA的方式

实现协议栈有几种方式,如raw-socket、netmap、dpdk等,这里用netmap实现

如果不这样实现的话,会多拷贝一次,下面看原理图

. 获取原始数据

获取原始数据的三种方法介绍

不经过网络协议栈解析,拿到原始数据sk_buff;

  1. 使用原始套接字raw socket , tcpdump和wireshark就是使用这个做的,raw socket主要用来抓包。
  2. dbdk
  3. netmap是用于用户层应用程序收发原始网络数据的高性能框架,本文使用netmap进行数据的收发。
1、netmap 原理

网卡即不在物理层,也不在数据链路层,是在这两层之间做转换。

数据传输的流程

网卡将物理层的光电信号转换为数字信号(0101010)。给到网卡驱动,然后把这个数据(通过sk_buff(搬运工)) 拷贝迁移到协议栈。 然后协议栈解析完数据之后将数据拷贝放入recv buffer,然后应用程序通过系统调用就能得到这个数据。
 

netmap 采用 mmap 的方式,将网卡驱动的 ring 内存空间映射到用户空间。这样用户态可以直接操作内存,获取原始的数据,避免了内核和用户态的两次拷贝(网卡 -> 内核协议栈 -> 内存)

 

如果不用netmap走内核协议栈的话,我们在驱动和协议栈之间拷贝一次,在协议栈和应用层拷贝一次,那么就走了两次,当大量数据到来的话就会造成 传输速度下降,因为我们的IO操作

其实是很费时间的,所以我们就拷贝一次,大大的缩短了时间

2、netmap 环境搭建

安装 netmap

# 安装 netmap
git clone https://github.com/luigirizzo/netmap.git
cd netmap/LINUX
./configure
make && make install

# 将头文件拷贝到 /usr/include/net
cd ./netmap/sys/net/ # netmap 头文件位置
cp * /usr/include/net  

 启动 netmap

# 开启 netmap
insmod netmap.ko 
ls /dev/netmap -l
# 关闭 netmap
rmmod netmap.ko
 3、udp 协议栈的实现

3.1.以太网协议头格式
struct ethhdr {
	unsigned char h_dst[ETH_ALEN];//源mac,6字节
	unsigned char h_src[ETH_ALEN];//目的mac,6字节
	unsigned short h_proto;//协议类型,2字节
};
3.2 ip协议头格式

struct iphdr {

	unsigned char hdrlen:4,  //为什么跟报头看着不一样呢,那是因为我们的网络字节序是大端的
				  version:4; // 0x45     
	//我们的协议报头的时候,低位是版本号,高位是报头长度
    //那么编程的时候,低位的报头长度,高位是版本号
    //那么在转到网络上去之后就是低位是版本号			  
    //字节序问题,请去百度一下大小端问题

	unsigned char tos;//type of service

	unsigned short totlen;//total length
	//ip包总大小 - 首部大小等于数据大小

	unsigned short id;//16位标识
    //标识分片的包,因为网络层向下传的时候
    //会受mtu的大小,进行分片
    //所以要想确保数据是正常的,就需要设置一个标识,标识完整的数据包
    //也以便ip上传到传输层后续重组
	unsigned short flag_offset; //3位标志+13位片偏移
    //3位标识一个是df为1表示数据包不可以分片,0表示告知可以分片,
    //mf标识是否有更多分片,为0就表示最后一个分片了
    //那么我们在收到包的时候可以根据这个标志位和16位标识以及片偏移量重组数据了
    //

	unsigned char ttl; //time to live 生存周期(比如:每经过一个网关ttl-1)
	// 0x1234// htons

	unsigned char type;//8位协议  用于指明IP的上层协议.传输层的报头没有协议
    
	unsigned short check;//16位首部校验和

	unsigned int sip;//源ip,标识发送方主机
	unsigned int dip;//目的ip,标识接收方主机

}; // 20字节

3.3 udp协议头

//udp协议头
struct udphdr {

	unsigned short sport;//源端口
	unsigned short dport;//目的端口

	unsigned short length;//udp长度
	unsigned short check;//校验值

}; // 8字节
3.4 arp协议头

struct arphdr {

	unsigned short h_type;//硬件类型
	unsigned short h_proto;//协议类型
    

    //真正的地址是mac地址,
    //ip地址是逻辑地址,mac地址是物理地址,唯一标识一台主机的

	unsigned char h_addrlen;
	unsigned char h_protolen;

	unsigned short oper;//操作码,在发送arp包的时候,会
    //用到操作码,arp响应2和arp请求1
    //有了这个操作码,我们就知道是请求获取我的mac地址还是
    //我的arp请求已经到了(响应)
    //因为刚开始发arp包的时候,只携带自身的mac地址和arp请求
    //发送过后,再回发arp响应,将mac地址填上,此时收到的
    //arp包的源mac地址就是我们之前广播的主机的mac地址
    //然后做一个映射
	unsigned char smac[ETH_ADDR_LENGTH];
	unsigned int sip;

	unsigned char dmac[ETH_ADDR_LENGTH];
	unsigned int dip;
};

ICMP协议头我就不实现了,主要是用来进行ping命令的

3.5 各层数据包格式

我们还得定义一下OSI七层模型的数据包,因为网络层的数据包从上到下是解包和封包的过程

 越下面的层,会封装上面的层的协议头

struct udppkt {
	struct ethhdr eh;
	struct iphdr ip;
	struct udphdr udp;
	unsigned char data[0];//用户数据
    //柔性数组,这样就可以在结构体末尾动态地分配内存空间。
    //不会发生越界情况
};

//定义完以太网包,ip包和udp包之后
//我们还需要定义一个arp包
//为什么呢,因为arp缓存
//在我们xshell连接上之后会将
//eh0这张网卡的mac地址和ip地址做一个映射关系
//过一段时间之后这个mac和ip地址的映射关系就会消失
//所以我们需要自己搞一个arp包或者自己设置arp缓存
//或者静态的

//没有设置也没有静态arp缓存的话客户端就会发一次arp包
//那么既然我们是用netmap的方式接收的包,那么就需要自己接收
//到包,封装包,

struct arppkt {

	struct ethhdr eh;
	struct arphdr arp;

};

其他的包就不写了,其实就是在上层的包那里,添加下当前网络层的协议头


#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

#include <sys/poll.h>
#include <arpa/inet.h>

#define ETH_ADDR_LENGTH		6
#define NETMAP_WITH_LIBS

#include <net/netmap_user.h> 
#pragma pack(1)
//内存对齐设置为1,如果不设置为1的话
//会出问题,参考我的博客里的内存对齐篇



#define ETH_ALEN	6
#define PROTO_IP	0x0800
#define PROTO_ARP	0x0806

#define PROTO_UDP	17
#define PROTO_ICMP	1
#define PROTO_IGMP	2


struct ethhdr {
	unsigned char h_dst[ETH_ALEN];//源mac,6字节
	unsigned char h_src[ETH_ALEN];//目的mac,6字节
	unsigned short h_proto;//协议类型,2字节
};



struct iphdr {

	unsigned char hdrlen:4,  //为什么跟报头看着不一样呢,那是因为我们的网络字节序是大端的
				  version:4; // 0x45     
	//我们的协议报头的时候,低位是版本号,高位是报头长度
    //那么编程的时候,低位的报头长度,高位是版本号
    //那么在转到网络上去之后就是低位是版本号			  
    //字节序问题,请去百度一下大小端问题

	unsigned char tos;//type of service

	unsigned short totlen;//total length
	//ip包总大小 - 首部大小等于数据大小

	unsigned short id;//16位标识
    //标识分片的包,因为网络层向下传的时候
    //会受mtu的大小,进行分片
    //所以要想确保数据是正常的,就需要设置一个标识,标识完整的数据包
    //也以便ip上传到传输层后续重组
	unsigned short flag_offset; //3位标志+13位片偏移
    //3位标识一个是df为1表示数据包不可以分片,0表示告知可以分片,
    //mf标识是否有更多分片,为0就表示最后一个分片了
    //那么我们在收到包的时候可以根据这个标志位和16位标识以及片偏移量重组数据了
    //

	unsigned char ttl; //time to live 生存周期(比如:每经过一个网关ttl-1)
	// 0x1234// htons

	unsigned char type;//8位协议  用于指明IP的上层协议.传输层的报头没有协议
    
	unsigned short check;//16位首部校验和

	unsigned int sip;//源ip,标识发送方主机
	unsigned int dip;//目的ip,标识接收方主机

}; // 20字节



//udp协议头
struct udphdr {

	unsigned short sport;//源端口
	unsigned short dport;//目的端口

	unsigned short length;//udp长度
	unsigned short check;//校验值

}; // 8字节



struct udppkt {
	struct ethhdr eh;
	struct iphdr ip;
	struct udphdr udp;
	unsigned char data[0];//用户数据
    //柔性数组,这样就可以在结构体末尾动态地分配内存空间。
    //不会发生越界情况
};

//定义完以太网包,ip包和udp包之后
//我们还需要定义一个arp包
//为什么呢,因为arp缓存
//在我们xshell连接上之后会将
//eh0这张网卡的mac地址和ip地址做一个映射关系
//过一段时间之后这个mac和ip地址的映射关系就会消失
//所以我们需要自己搞一个arp包或者自己设置arp缓存
//或者静态的

//没有设置也没有静态arp缓存的话客户端就会发一次arp包
//那么既然我们是用netmap的方式接收的包,那么就需要自己接收
//到包,封装包,

struct arphdr {

	unsigned short h_type;//硬件类型
	unsigned short h_proto;//协议类型
    

    //真正的地址是mac地址,
    //ip地址是逻辑地址,mac地址是物理地址,唯一标识一台主机的

	unsigned char h_addrlen;
	unsigned char h_protolen;

	unsigned short oper;//操作码,在发送arp包的时候,会
    //用到操作码,arp响应2和arp请求1
    //有了这个操作码,我们就知道是请求获取我的mac地址还是
    //我的arp请求已经到了(响应)
    //因为刚开始发arp包的时候,只携带自身的mac地址和arp请求
    //发送过后,再回发arp响应,将mac地址填上,此时收到的
    //arp包的源mac地址就是我们之前广播的主机的mac地址
    //然后做一个映射
	unsigned char smac[ETH_ADDR_LENGTH];
	unsigned int sip;

	unsigned char dmac[ETH_ADDR_LENGTH];
	unsigned int dip;
};

struct arppkt {

	struct ethhdr eh;
	struct arphdr arp;

};
//icmp我就不封装了,有icmp协议我们才能用ping命令,否则用ping命令是
//ping不通的,可以用wireshark抓包看一下有没有icmp协议


int str2mac(char *mac, char *str) {

	char *p = str;
	unsigned char value = 0x0;
	int i = 0;

	while (*p != '\0') {
		
		if (*p == ':') {
			mac[i++] = value;
			value = 0x0;
		} else {
			
			unsigned char temp = *p;
			if (temp <= '9' && temp >= '0') {
				temp -= '0';
			} else if (temp <= 'f' && temp >= 'a') {
				temp -= 'a';
				temp += 10;
			} else if (temp <= 'F' && temp >= 'A') {
				temp -= 'A';
				temp += 10;
			} else {	
				break;
			}
			value <<= 4;
			value |= temp;
		}
		p ++;
	}

	mac[i] = value;

	return 0;
}



void echo_arp_pkt(struct arppkt *arp, struct arppkt *arp_rt, char *mac) {
	//把源和目的 的ip换一下就行了,然后补个mac地址
	memcpy(arp_rt, arp, sizeof(struct arppkt));

	memcpy(arp_rt->eh.h_dst, arp->eh.h_src, ETH_ADDR_LENGTH);
	str2mac(arp_rt->eh.h_src, mac);
	arp_rt->eh.h_proto = arp->eh.h_proto;

	arp_rt->arp.h_addrlen = 6;
	arp_rt->arp.h_protolen = 4;
	arp_rt->arp.oper = htons(2);
	
	str2mac(arp_rt->arp.smac, mac);
	arp_rt->arp.sip = arp->arp.dip;
	
	memcpy(arp_rt->arp.dmac, arp->arp.smac, ETH_ADDR_LENGTH);
	arp_rt->arp.dip = arp->arp.sip;

}
//就是解析完arp包后再发过去,目的mac和源mac什么的变一下
// void echo_arp_pkt(struct arppkt *arp, struct arppkt *arp_rt, char *mac):
//这是一个函数定义,它接受三个参数,其中 arp 是指向输入ARP数据包的指针,arp_rt 
//是指向输出ARP数据包的指针,mac 是一个字符数组,可能用于存储MAC地址。

// // memcpy(arp_rt, arp, sizeof(struct arppkt)):
// 这行代码将从输入ARP数据包 arp 复制整个数据包的内容到输出ARP数据包 arp_rt 中,
// 复制的字节数为 sizeof(struct arppkt)。

// // memcpy(arp_rt->eh.h_dst, arp->eh.h_src, ETH_ADDR_LENGTH):
// 这行代码将输入ARP数据包中的目标MAC地址(eh.h_dst)复制到输出ARP数据包的源MAC地址(eh.h_src),
// 以交换它们的值。 ETH_ADDR_LENGTH 可能是一个常量,表示MAC地址的长度。

// // str2mac(arp_rt->eh.h_src, mac):
// 这行代码似乎是将 mac 中的MAC地址数据复制到输出ARP数据包的源MAC地址字段(eh.h_src)中。

// // arp_rt->eh.h_proto = arp->eh.h_proto:
// 这行代码将输出ARP数据包的以太网协议类型字段(eh.h_proto)设置为与输入ARP数据包相同的值,以保持协议类型不变。

// // arp_rt->arp.h_addrlen = 6 和 arp_rt->arp.h_protolen = 4:
// 这两行代码设置输出ARP数据包的地址长度字段和协议地址长度字段。

// // arp_rt->arp.oper = htons(2):这行代码将输出ARP数据包的操作码字段(oper)设置为2,这表示ARP响应。

// // str2mac(arp_rt->arp.smac, mac):这行代码将 mac 中的MAC地址数据复制到
// 输出ARP数据包的发送方MAC地址字段(smac)中。

// // arp_rt->arp.sip = arp->arp.dip:这行代码将输出ARP数据包的发送方IP地址字段(sip)
// 设置为输入ARP数据包的目标IP地址字段(dip)的值。

// // memcpy(arp_rt->arp.dmac, arp->arp.smac, ETH_ADDR_LENGTH):这行代码将输入ARP数据包的源MAC地址(smac)
// 复制到输出ARP数据包的目标MAC地址字段(dmac),以交换它们的值。

// // arp_rt->arp.dip = arp->arp.sip:这行代码将输出ARP数据包的目标IP地址字段(dip)
// 设置为输入ARP数据包的发送方IP地址字段(sip)的值。

// // 总的来说,这个函数接受一个ARP请求数据包,将其内容复制到一个ARP响应数据包中,
// 同时交换了源和目标的MAC地址和IP地址,以制作一个相应的ARP响应数据包,用于回应原始ARP请求。
// 这种操作通常用于网络通信中,以满足地址解析的需求。函数的实现可能依赖于其他未提供的函数或数据结构,
// 如 struct arppkt 和 str2mac。


//
int main() {

	struct nm_pkthdr h;//ringbuffer的头
	struct nm_desc *nmr = nm_open("netmap:eth0", NULL, 0, NULL);
	if (nmr == NULL) return -1;
	//把fd放入pollfd中,如果fd可读,就去操作数据,不可读就不操作
	struct pollfd pfd = {0};
	pfd.fd = nmr->fd;
	pfd.events = POLLIN;

	while (1) {

		int ret = poll(&pfd, 1, -1);//第一个参数:pollfd,第二个参数:fd个数,第三个参数:-1代表一直阻塞,直到数据过来
		if (ret < 0) continue;

		if (pfd.revents & POLLIN) {//有数据来了

			unsigned char *stream = nm_nextpkt(nmr, &h);//取数据(因为已经在内存中了,不能用读,由于是环形ringbuffer,因此取数据叫next package)

			struct ethhdr *eh = (struct ethhdr *)stream;//把stream中的第一个部分转换为以太网头
			if (ntohs(eh->h_proto) ==  PROTO_IP) { //取出来的上层协议是IP协议

				struct udppkt *udp = (struct udppkt *)stream;//转化为udp帧数据格式

				if (udp->ip.type == PROTO_UDP) { //udp包

					int udplength = ntohs(udp->udp.length);

					udp->data[udplength-8] = '\0'; //udp总长度-8个字节长度的udp头  就是upd数据部分的长度。  末尾加上字符串结尾'\0'

					printf("udp --> %s\n", udp->data);

				} else if (udp->ip.type == PROTO_ICMP) {

					

				}
				

			} else if (ntohs(eh->h_proto) ==  PROTO_ARP) {//ARP包

				struct arppkt *arp = (struct arppkt *)stream;

				struct arppkt arp_rt;
                
               //eth0的ip地址,eth0是网卡接口
				if (arp->arp.dip == inet_addr("10.0.4.12")) { //如果接受到的广播arp是本机的就回复 (如果不进行判断就是ARP攻击了,不管是什么arp请求,都回复,会导致它们的arp表更新错误的信息)
                    //eth0的mac地址
					echo_arp_pkt(arp, &arp_rt, "52:54:00:d5:c3:82");//创建一个arp回复的包(源和目的互换,补充上mac地址(ifconfig可以查看))

					nm_inject(nmr, &arp_rt, sizeof(arp_rt));//发送arp应答

					printf("arp ret\n");
				
				}

			}

		}

	}
	
	

}

使用nm_open()函数时,需要指定的是物理网卡名。eth0是物理显卡名,ens33是虚拟网卡名。
修改网卡名字:

sudo vim /etc/default/grub

//修改GRUB_CMDLINE_LINUX为如下,主要是增加 net.ifnames=0 biosdevname=0 这句
GRUB_CMDLINE_LINUX="find_presend=/presend.cfg noprompt net.ifnames=0 biosdevname=0 default_hugepagesz=1G hugepagesz=2M hugepages=1024 isolcpus=0-2"

启动程序后刚开始可以接收udp包,过一段时间后就接受不到了

1.原因:程序把网卡的数据发送到了共享内存,不经过协议栈。而局域网内所有机器每隔一段时间会发送arp协议告知局域网内其他机器自己的IP和MAC地址,如果一段时间内没有收到对方的arp协议,那么本机就会把arp表对应的arp协议信息(IP和MAC地址)删掉。
因此,因为一开始发送udp包对方的时候,还知道对方的IP和MAC地址。对方因为没有走协议栈,对方就会不发arp协议给我,那么过段时间后,我的arp表就会把对方的IP和MAC地址信息删掉,我就没办法知道对方的IP和MAC地址,因此后面就无法发送upd包给到对方了。

没开启进程前,可以ping通进程所在的机器,过段时间后无法ping通。
2.原因:程序把网卡的数据发送到了共享内存,不经过协议栈。而ping协议的反馈是走ICMP协议的
因此,因为ping对方的时候,对方因为没有走协议栈,对如果对方处理网卡信息的时候,没有实现对ICMP协议的解析和回复,那么我ping对方就没办法收到对方的反馈。

解决方法:

1.ping命令只需要实现一下icmp包就行
2.怎么保存arp缓存呢

   2.1 自己添加一下arp,设置成静态的,那么数据包就知道发到局域网的哪台主机了,

   因为路由器保存着局域网内的arp缓存表,arp缓存表的ip地址是局域网内部的私有ip

   地址,添加了之后,路由器就有一条arp缓存,当数据包到来的时候,路由器识别到 

   的是公网ip地址,然后路由器收到数据包之后,根据arp缓存表,找到对应的mac地址

   和,先去发到mac层,判断是否符合数据包的mac地址,再发到网络层,判断ip是否

   是数据包的ip,是的话,就向传输层传输

  2.2 自己写arp包,收到arp请求的时候,填充我们的eth0的ip地址和mac地址,重新发送

  过去


http://www.niftyadmin.cn/n/5150836.html

相关文章

归并排序--C语言实现

1. 简述 归并排序的原理是将&#xff0c;两个较大的数组分为大小几乎一致的两个数组。 再将两个数组进行合并成新的有序数组。 合并两个数组的时候需要额外的一个数组的空间。 2. 实现 上图说明过程 代码 #include <stdio.h>void Merge(int *arr, int *tmp, int …

模拟实现简易版shell(需要单独处理 ls+cd+export)

目录 minishell -- 简易版shell 大致思路 注意点 ls cd export 代码 minishell -- 简易版shell 大致思路 首先确定,我们的shell是一直在运行的(while(1))每次都会有提示信息打印出来 [xxxxxx x]输入命令(选项),其中,我们需要将读入的字符串分开,不然只是没有意义的字符…

数字处理-第10届蓝桥杯省赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第3讲。 数字处理&#xff…

产品经理入门学习(二):产品经理问题思考维度

参考引用 黑马-产品经理入门基础课程 1. 抓住核心用户 1.1 为什么要抓住核心用户 什么是用户&#xff1f; 所有和产品有关系的群体就是用户&#xff0c;他们是一群既有共性&#xff0c;又有差异的群体组合 做产品为什么要了解用户&#xff1f; 了解用户的付费点、更好的优化产…

二叉树第i层结点个数

//二叉树第i层结点个数 int LevelNodeCount(BiTree T, int i) {if (T NULL || i < 1)return 0;if (i 1) return 1;return LevelNodeCount(T->lchild, i - 1) LevelNodeCount(T->rchild, i - 1); } int GetDepthOfBiTree(BiTree T) {if (T NULL)return 0;return Ge…

MySQL复习总结(一):基础篇

文章目录 一、MySQL概述二、SQL语句2.1 SQL分类2.2 DDL语言2.2.1 数据库操作2.2.2 表操作:通用2.2.3 表操作:修改2.2.4 表操作:删除 2.3 DML语言2.3.1 添加数据2.3.2 修改数据2.3.3 删除数据 2.4 DQL语言2.5 DCL语言 三、函数四、约束五、多表查询5.1 多表关系 六、事务6.1 事务…

整理的一些Java细节问题

1. 为什么要有无参构造&#xff1f; 在 Java 中&#xff0c;如果一个类没有显式定义构造方法&#xff0c;编译器会自动生成一个默认的无参构造方法&#xff08;也称为默认构造方法&#xff09;。无参构造方法是一个没有任何参数的构造方法。 无参构造方法的存在有几个重要原因…