20. 从零用Rust编写正反向代理,四层反向代理stream(tcp与udp)实现

news/2024/5/18 12:36:04 标签: rust, tcp/ip, udp

wmproxy

wmproxy已用Rust实现http/https代理, socks5代理, 反向代理, 静态文件服务器,四层TCP/UDP转发,内网穿透,后续将实现websocket代理等,会将实现过程分享出来,感兴趣的可以一起造个轮子

项目地址

gite: https://gitee.com/tickbh/wmproxy

github: https://github.com/tickbh/wmproxy

四层代理

四层代理,也称为网络层代理,是基于IP地址和端口号的代理方式。它只关心数据包的源IP地址、目的IP地址、源端口号和目的端口号,不关心数据包的具体内容。四层代理主要通过报文中的目标地址和端口,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。

因为四层代理不用处理任何相关的包信息,只需将包数据传递给正确的服务器即可,所以实现相对比较简单。

以下是OSI七层模型的示意图,来源于网上

图片.png

实现方式

双端建立连接,也就是收到客户端的连接的时候,同时建立一条通往服务端的连接,然后做双向绑定即可完成服务。

四层代理还有udp的转发需求,需要同步将udp的数据进行转发,udp的处理方式处理会相对复杂一些,因为当前地址只有绑定一份,但是可能来自各种不同的地址,不同的客户端的(remote_ip, remote_port)我们需要当成一个全新的客户端。

而且有时候无法主动感知是否已经被断开了,所以也必须有超时机制,好在超时的时候能及时释放掉连接,好让系统及时的socket资源。

TCP实现

tcp找到相应的地址,连接,并双向绑定即可

rust">pub async fn process<T>(
    data: Arc<Mutex<StreamConfig>>,
    local_addr: SocketAddr,
    mut inbound: T,
    _addr: SocketAddr,
) -> ProxyResult<()>
where
    T: AsyncRead + AsyncWrite + Unpin + std::marker::Send + 'static,
{
    let value = data.lock().await;
    for (_, s) in value.server.iter().enumerate() {
        if s.bind_addr.port() == local_addr.port() {
            let addr = ReverseHelper::get_upstream_addr(&s.upstream, "")?;
            let mut connect = HealthCheck::connect(&addr).await?;
            copy_bidirectional(&mut inbound, &mut connect).await?;
            break;
        }
    }
    Ok(())
}
UDP实现

UDP相对比较复杂,下面我们先列举内部的流程图

根据地址连接发送数据到
将Receiver传到以接收数据
否,将数据Sender给
异步读取数据并发送
绑定反向udp端口
客户端
是否第一次
创建异步协程
异步协程中

在stream绑定的时候,要区分出TCP还是UDP的,做分别的绑定

rust">/// stream的绑定,按bind_mode区分出udp或者是tcp,返回相应的列表
pub async fn bind(&mut self) -> ProxyResult<(Vec<TcpListener>, Vec<StreamUdp>)> {
    let mut listeners = vec![];
    let mut udp_listeners = vec![];
    let mut bind_port = HashSet::new();
    for value in &self.server.clone() {
        if bind_port.contains(&value.bind_addr.port()) {
            continue;
        }
        bind_port.insert(value.bind_addr.port());
        if value.bind_mode == "udp" {
            let listener = Helper::bind_upd(value.bind_addr).await?;
            udp_listeners.push(StreamUdp::new(listener, value.clone()));
        } else {
            let listener = Helper::bind(value.bind_addr).await?;
            listeners.push(listener);
        }
    }
    Ok((listeners, udp_listeners))
}

我们会对连接做分别的监听,下面是udp的获取是否有新数据:

rust">async fn multi_udp_listen_work(
    listens: &mut Vec<StreamUdp>,
) -> (io::Result<(Vec<u8>, SocketAddr)>, usize) {
    if !listens.is_empty() {
        let (data, index, _) =
            select_all(listens.iter_mut().map(|listener| {
                listener.next().boxed()
            })).await;
        if data.is_none() {
            return (Err(io::Error::new(io::ErrorKind::InvalidInput, "read none data")), index)
        }
        (data.unwrap(), index)
    } else {
        let pend = std::future::pending();
        let () = pend.await;
        unreachable!()
    }
}

此处我们用next,也就是我们实现了 futures_core::Stream接口,用Poll的方式来注册实现有事件的时候来通知。

在tokio中,在read或者write的时候返回Poll::Pending,将会将socket的可读可写注册到底层,如果一旦系统可读可写就会通知该接口,将会重新执行一遍futures_core::Stream

我们将同时可以处理可读可写可发送事件,如果接口超时我们将关闭相应的接口。

rust">impl Stream for StreamUdp {
    type Item = io::Result<(Vec<u8>, SocketAddr)>;
    fn poll_next(
        mut self: std::pin::Pin<&mut Self>,
        cx: &mut std::task::Context<'_>,
    ) -> std::task::Poll<Option<Self::Item>> {
        let _ = self.poll_write(cx)?;
        let _ = self.poll_sender(cx)?;
        self.poll_read(cx)
    }
}

下面是主要的StreamUdp

rust">/// Udp转发的处理结构,缓存一些数值以做中转
pub struct StreamUdp {
    /// 读的缓冲类,避免每次都释放
    pub buf: BinaryMut,
    /// 核心的udp绑定端口
    pub socket: UdpSocket,
    pub server: ServerConfig,

    /// 如果接收该数据大小为0,那么则代表通知数据关闭
    pub receiver: Receiver<(Vec<u8>, SocketAddr)>,
    /// 将发送器传达给每个子协程
    pub sender: Sender<(Vec<u8>, SocketAddr)>,

    /// 接收的缓存数据,无法保证全部直接进行发送完毕
    pub cache_data: LinkedList<(Vec<u8>, SocketAddr)>,
    /// 发送的缓存数据,无法保证全部直接进行发送完毕
    pub send_cache_data: LinkedList<(Vec<u8>, SocketAddr)>,
    /// 每个地址绑定的对象,包含Sender,最后操作时间,超时时间
    remote_sockets: HashMap<SocketAddr, InnerUdp>,
}

结果测试

我们自己开一个udp服务端,绑定了本地的8089,我们将接收到的数据前面加上from server:并进行返回,代理端我们绑定了84的端口,并将udp数据转发给8089端:

rust">use tokio::net::UdpSocket;
use std::io;

#[tokio::main]
async fn main() -> io::Result<()> {
    let sock = UdpSocket::bind("0.0.0.0:8089").await?;
    let mut buf = [0; 1024];
    loop {
        let (len, addr) = sock.recv_from(&mut buf).await?;
        let mut vec = "from server: ".as_bytes().to_vec();
        vec.extend(&buf[..len]);
        let _ = sock.send_to(&vec, addr).await?;
    }
}

客户端我们用nc运行:

图片.png

可以看出两个客户端互相独立,彼此返回的数据均符合预期,正常的接收及返回。

TCP我们绑定了83端口并转发到HTTP的本地端口8080,我们用curl进行测试,符合预期,如图:

图片.png

结语

至此四层的反向代理TCP/UDP均已完成,也符合预期。

点击 [关注][在看][点赞] 是对作者最大的支持


http://www.niftyadmin.cn/n/5328163.html

相关文章

Pandas实战100例 | 案例 55: 应用条件

案例 55: 应用条件 知识点讲解 在数据处理过程中&#xff0c;有时需要根据条件对数据进行转换或计算。Pandas 的 apply 方法允许你对 DataFrame 的每一行或列应用一个自定义函数&#xff0c;实现复杂的逻辑。 应用条件: 使用 apply 方法结合 lambda 函数&#xff0c;可以根据…

SV-8004VP 网络对讲求助话筒,4个自定义按键

SV-8004VP网络对讲求助话筒&#xff0c;4个自定义按键 SV-8004VP是一款4按键求助对讲话筒&#xff0c;具有10/100M以太网接口&#xff0c;支持G.711音频编解码&#xff0c;其接收SIP网络的音频数据&#xff0c;实时解码播放&#xff0c;还配置了麦克风输入和扬声器输出。 SV-…

59道SpringCloud面试题详解含答案(值得珍藏)

1. 什么是微服务架构 微服务架构就是将单体的应用程序分成多个应用程序&#xff0c;这多个应用程序就成为微服务&#xff0c;每个微服务运行在自己的进程中&#xff0c;并使用轻量级的机制通信。这些服务围绕业务能力来划分&#xff0c;并通过自动化部署机制来独立部署。这些服…

仿真验证方法(1)——动态验证

一、概述 1.1 验证的目的和方法 在现代集成电路设计中&#xff0c;验证所占工作量超过70%。验证要求真实而完备&#xff0c;它决定了设计的成败与成本。 验证的目的 原始描述是否正确&#xff1f;&#xff08;代码&#xff09; 逻辑功能是否正确&#xff1f;&#xff08;功能…

网站优化之favicon.ico

本文于2015年底完成。 背景 某一天在办公室分析产品首页加载速度时&#xff0c;无意中从Chrome浏览器的调试窗口看到浏览器在请求一个名为favicon.ico文件&#xff0c;由于Web系统的根路径下不存在这个文件&#xff0c;Chrome仅报了404访问失败&#xff0c;但当时没有太关注。…

探索设计模式的魅力:工厂方法模式

工厂方法模式是一种创建型设计模式&#xff0c;它提供了一种创建对象的接口&#xff0c;但将具体实例化对象的工作推迟到子类中完成。这样做的目的是创建对象时不用依赖于具体的类&#xff0c;而是依赖于抽象&#xff0c;这提高了系统的灵活性和可扩展性。 以下是工厂方法模式的…

数据库|数据库范式(待完成)

文章目录 数据库的范式数据库的基本操作什么是数据库的范式产生的背景&#xff08;没有规范化的坏处/带来的问题&#xff09;规范化表格设计的要求五大范式的作用——树立标准打个比方——桥的承载能力1NF&#xff08;1范式&#xff09;如何转换成合适的一范式 2NF&#xff08;…

js日期排序(使用sort)

根据日期进行排序&#xff0c;也可以根据number类型的大小来进行排序 按日期排序的函数 let data [{id: 2,time: 2019-04-26 10:53:19},{id: 4,time: 2019-04-26 10:51:19}, {id: 1,time: 2019-04-26 11:04:32}, {id: 3,time: 2019-04-26 11:05:32} ] //property是你需要排序…