网络分层和网络原理之UDP和TCP

news/2024/5/18 13:16:54 标签: 网络, udp, 网络协议

温故而知新

目录

网络分层 

应用层 

http协议

传输层

介绍 

UDP协议

TCP协议 

网络

数据链路层

物理层


网络分层 

一. 应用层 

应用程序

现成的应用层协议有超文本协议http(不仅仅有文本).

http协议

http://t.csdnimg.cn/e0e8kicon-default.png?t=N7T8http://t.csdnimg.cn/e0e8k

自定义应用层协议,包含需要传输的信息以及格式,将信息转为字符串放入TCP或者UDP的socket中。常见传输格式xml,最流行的是json,但json仍然有网络带宽的消耗,protobuffer是将信息压缩为二进制,带宽消耗较小。

二. 传输层

1. 介绍 

关注起点和终点

主要有TCP和UDP :

TCP:有连接,可靠传输,面向字节流,全双工。适用于需要确保数据完整性和顺序的场景。eg:文件传输,状态更新。

UDP:无连接,不可靠传输,面向数据报,全双工,接收缓冲区。适用于高速传输和对实时性要求较高的应用。


传输层一个重要概念:端口号

固定占2个字节,

表示范围0~65535(2^16-1),

0一般不用,1~1023是知名端口号,如80是http的端口号22是ssh的端口号(登录远程主机)

2.UDP协议

 (1)组成

UDP的首部长度固定为8个字节(64位)64k。它由源端口号、目标端口号、长度和校验和组成。每个字段都占用2个字节。

  1. 源端口号(Source Port):占用2个字节,表示发送方使用的端口号。
  2. 目标端口号(Destination Port):占用2个字节,表示接收方使用的端口号。
  3. 长度(Length):占用2个字节,表示UDP首部和数据的总长度,包括8字节的UDP首部和数据部分的长度。
  4. 校验和(Checksum):占用2个字节,用于检测UDP首部和数据在传输过程中是否发生错误。

UDP的简洁首部长度是其相对于TCP更轻量级的一个特点,但也意味着它没有TCP那样的可靠性保证和流量控制机制。因此,在使用UDP时需要注意数据的可靠性和完整性问题,并根据具体应用场景决定是否需要额外的机制来处理这些问题。

(2)细节 

✅1.当udp数据报携带信息过大,导致服务器与客户端交互的数据量接近64kb,超过上限会导致数据阶段,数据出错,解决办法:

1.将数据拆分为多个包,使用多个UDP传输()如何去拆包组包,开发测试成本大。

2.使用TCP,无包大小的限制(

3.升级UDP,比较麻烦。()UDP是在操作系统内核实现的.


✅2.网络传输中数据是有可能出错的,如何基于校验和来完成数据校验呢?


1.发送方,把要发送的数据整理好(称为 data1),通过一定的算法, 计算出校验和 checksum1发送方把 data1 和 checksum1 -起通过网络发送出去.
2.接收方收到数据,收到的数据称为 data2 (数据可能和 data1 就不一样了),收到数据 checksum1
3.接收方再根据 data2 重新计算校验和(按照相同的算法),得到 checksum2
4.对比 checksum1 和 checksum2 是否相同.如果不同,则认为 data2 和 data1 一定不相同如 5.checksum1 和 checksum2 相, 则认为 data1 和 data2 大概率是相同的 理论上存在不同的可能性。


✅3.在UDP中使用循环冗余校验(CRC):把需要进行校验和的数据的每个字节逐个累加,把结果保存在两个字节的变量中,累加过程溢出也没事。如果中间出现数据错误,第二次的校验和就和第一次不也一样。

更严谨的是md5,MD5进行了定长,分散(一个字节不同差异也很大),不可逆。MD5也适合作为hash算法(哈希表是把一个key通过hash函数转换为数组下标,hash函数尽量分散,哈希碰撞的可能从才能降低),


✅4.UDP特点:寄信

UDP进行网络通信可以通过java.net包下的DatagramSocketDatagramPacket类来实现

无连接:知道对方ip和端口号即可连接,

不可靠:发送端发送数据报后,如果因为网络问题并没有到接收方,UDP协议也不会给应用层返回任何错误信息。  

全双工:可以通过一个socket进行send和reseive,既能读也能写,即全双工;

缓冲区:UDP只有接收缓冲区,没有发送缓冲区。

UDP发送的数据会直接发送给内核,由内核将数据传给网络层协议进行后续传输动作;UDP具有接收缓冲区,这个缓冲区不能保证受到道德UDP报的顺序与发送UDP报的顺序一致;缓冲区满,再到达的UDP报就会被 丢弃。

大小受限:UDP协议首部有一个16位的最大长度,2个字节,也就是UDP能传输的最大长度是64KB(包含UDP首部)

面向数据报:以DataGaramSocket为单位传输

DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, receiverAddress, receiverPort);

UDP是一种面向数据报的无连接协议,因此发送方和接收方之间不存在建立连接的过程,也没有可靠性保证。每个UDP数据报都是独立的,可能会丢失、重复或乱序。实际使用中可能需要考虑超时重传,分片传。

import java.net.DatagramSocket;
import java.net.DatagramPacket;
import java.net.InetAddress;

public class UDPExample {
    public static void main(String[] args) {
        try {
            // 创建发送方的UDP socket
            DatagramSocket senderSocket = new DatagramSocket();

            // 准备要发送的数据
            String message = "Hello, UDP!";
            byte[] sendData = message.getBytes();
            InetAddress receiverAddress = InetAddress.getByName("127.0.0.1"); // 接收方的IP地址
            int receiverPort = 12345; // 接收方的端口号

            // 创建要发送的数据报文
            DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, receiverAddress, receiverPort);

            // 发送数据报文
            senderSocket.send(sendPacket);

            // 创建接收方的UDP socket
            DatagramSocket receiverSocket = new DatagramSocket(receiverPort);

            // 准备接收数据的缓冲区
            byte[] receiveData = new byte[1024];

            // 创建接收数据的数据报文
            DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);

            // 接收数据报文
            receiverSocket.receive(receivePacket);

            // 解析接收到的数据
            String receivedMessage = new String(receivePacket.getData());
            System.out.println("Received message: " + receivedMessage);

            // 关闭socket
            senderSocket.close();
            receiverSocket.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

5.UDP无连接不可靠面向数据报的协议如果要基于传输层UDP协议来实现可靠传输应该如何设计?大小有限制,如果要基于传输层UDP协议,传输超过64k的数据,如何设计?

参考TCP可靠性的实现

5.2+5.1分片重组+序列化保证顺序;5.1确认应答;超时重传;滑动窗口控制流量,校验和.......


简单了解基于UDP的应用层协议
NFS: 网络文件系统
TFTP:简单文件传输协议
DHCP:动态主机配置协议
BOOTP:启动协议 (用于无盘设备启动)
·DNS: 域名解析协议

3.TCP协议 

(1)特性如下链接:

 http://t.csdnimg.cn/NHMHb

(2)组成 

 初心:可靠传输~

数据报=首部(报头)+载荷;一行4个字节

报头长度是不固定的,选项也是报头的一部分,TCP报头包括固定部分和可选部分。固定部分的长度是20个字节(160位),包括源端口号、目标端口号、序列号、确认号、数据偏移、控制位、窗口大小、校验和和紧急指针等字

报头最短是20个字节(没有选项),最长是60个字节(选项最多是40字节);

保留位(6位):有需要就用。比udp的64kb好。扩展余地。

TCP首部长度字段占用4个位(即4个二进制位也就是4个字节,32个比特位),它使用4位来表示长度。由于4位最多能表示16个不同的取值(从0000到1111),因此TCP首部长度字段的取值范围是0-15,表示TCP首部的长度是以32位(此处设定4字节,所以有4倍的设定关系)为单位的倍数。也就是说,长度值乘以4才得到TCP首部的实际长度。当TCP首部长度字段取值为5时,长度为5 * 4 = 20字节,即TCP首部固定部分的长度。

TCP协议的组成主要包括以下部分:

  1. 源端口号(Source Port):占用2个字节,表示发送方使用的端口号。
  2. 目标端口号(Destination Port):占用2个字节,表示接收方使用的端口号。
  3. 序列号(Sequence Number):占用4个字节,表示本次传输的第一个字节的序列号。
  4. 确认号(Acknowledgment Number):占用4个字节,表示期望接收到的下一个字节的序列号。
  5. 数据偏移(Data Offset):占用4个位,表示TCP首部长度,单位为4字节,因此TCP首部长度最大值为60字节。
  6. 保留位(Reserved):占用6个位,保留未来使用,必须设置为0。
  7. 控制位(Flags):占用6个位,包含ACK、SYN、FIN等标志位,用于控制TCP连接的建立、维护和关闭。其中ack为1,表示它表示应答报文,ack为0表示普通报文。SYN为。
  8. 窗口大小(Window Size):占用2个字节,表示接收窗口的缓冲区大小,用于流量控制。
  9. 检验和(Checksum):占用2个字节,用于检测TCP首部和数据在传输过程中是否发生错误。
  10. 紧急指针(Urgent Pointer):占用2个字节,表示紧急数据的位置,用于处理紧急数据。

(3)特点 

有连接

 Socket clientSocket = serverSocket.accept();
accept方法会阻塞当前线程直到有客户端连接请求到达并被接受
记得抛出异常防止网络故障类问题

可靠传输+面向字节流+全双工(既可以读也可以写)

 // 获取输入输出流
BufferedReader in = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));
PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);

💡TCP的可靠不在于它是否可以把数据100%传输过去,而是

  • 1.发送方发去数据后,可以知道接收方是否收到数据;
  • 2.如果接收方没收到,可以有补救手段;

三. 网络

关注路径规划

四. 数据链路层

关注路径中节点的连接

五. 物理层

关注设备


http://www.niftyadmin.cn/n/5348227.html

相关文章

Soul CEO张璐积极履行反诈责任,倡导共建安全网络

近期,备受期待的反诈电影《鹦鹉杀》热映,深入剖析杀猪盘这一网络诈骗行为。为协助更多人增强反诈意识,备受欢迎的社交应用Soul App积极响应,在Soul CEO张璐的带领下,邀请电影中的演员和平台的反诈中心共同参与反诈宣传。此外,一旦用户在平台搜索“诈骗”、“杀猪盘”、“鹦鹉杀…

015vue

src-store-vuex的模块, src-router放路由的模块 src-views放的都是页面组件 components一般组件 路径,指的就是src路径 handleLogin() {this.$refs.loginForm.validate(valid > {if (valid) {this.loading truethis.$store.dispatch(user/login, th…

docker 存储管理

文章目录 docker 存储管理容器存储方案docker 容器存储解决方案 docker 存储驱动基本概述存储驱动的选择原则主流的 docker 存储驱动docker 版本支持的存储驱动 overlay2 存储驱动OverlayFSoverlay2 存储驱动要求配置 docker 使用 overlay2 驱动 overlay2 存储驱动的工作机制Ov…

RT-1论文翻译:ROBOTICS TRANSFORMER FOR REAL-WORLD CONTROL AT SCALE

RT-1: ROBOTICS TRANSFORMER FOR REAL-WORLD CONTROL AT SCALE RT-1:用于真实世界大规模控制的机器人Transformer RT2 论文翻译: https://blog.csdn.net/weixin_43334869/article/details/135858619 ABSTRACT By transferring knowledge from large, diverse, ta…

自动驾驶的决策层逻辑

作者 / 阿宝 编辑 / 阿宝 出品 / 阿宝1990 自动驾驶意味着决策责任方的转移 我国2020至2025年将会是向高级自动驾驶跨越的关键5年。自动驾驶等级提高意味着对驾驶员参与度的需求降低,以L3级别为界,低级别自动驾驶环境监测主体和决策责任方仍保留于驾驶…

防御保护---安全策略

文章目录 目录 一.安全策略概述 概述: 安全策略的作用: 安全策略与传统防火墙的区别 二.案例分析 练习 一.安全策略概述 概述: 防火墙安全策略的作用在于加强网络系统的安全性,保护网络免受恶意攻击、非法访问和数据泄露的威胁。…

利用SPI,结合数据库连接池durid进行数据服务架构灵活设计

接着上一篇文章业务开始围绕原始凭证展开,而展开的基础无疑是围绕着科目展开的。首先我们业务层面以财政部的小企业会计准则的一级科目引入软件中。下面我们来考虑如何将科目切入软件更加灵活,方便业务扩展、维护与升级。 SPI是首先想到的数据服务方式 为什么会想到它呢?首…