改进YOLOv5系列:增加Swin-Transformer小目标检测头

news/2024/6/17 15:13:12 标签: 目标检测, transformer, 深度学习
  • 💡统一使用 YOLOv5 代码框架,结合不同模块来构建不同的YOLO目标检测模型。
  • 🌟本项目包含大量的改进方式,降低改进难度,改进点包含【Backbone特征主干】【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】、【数据增强部分】【标签分配策略】、【激活函数】等各个部分。

本篇是《增加一个Swin检测头结构🚀》的代码演示

最新创新点改进博客推荐

(🔥 博客内 附有多种模型改进方式,均适用于YOLOv5系列 以及 YOLOv7系列 改进!!!)

  • 💡🎈☁️:改进YOLOv7系列:首发最新结合多种X-Transformer结构新增小目标检测层,让YOLO目标检测任务中的小目标无处遁形

  • 💡🎈☁️:改进YOLOv7系列:结合Adaptively Spatial Feature Fusion自适应空间特征融合结构,提高特征尺度不变性

  • 💡🎈☁️:改进YOLOv5系列:首发结合最新Extended efficient Layer Aggregation Networks结构,高效的聚合网络设计,提升性能

  • 💡🎈☁️:改进YOLOv7系列:首发结合最新CSPNeXt主干结构(适用YOLOv7),高性能,低延时的单阶段目标检测器主干,通过COCO数据集验证高效涨点

  • 💡🎈☁️:改进YOLOv7系列:最新结合DO-DConv卷积、Slim范式提高性能涨点,打造高性能检测器

  • 💡🎈☁️:改进YOLOv7系列:结合最新即插即用的动态卷积ODConv

  • 💡🎈☁️:改进YOLOv7系列:首发结合最新Transformer视觉模型MOAT结构:交替移动卷积和注意力带来强大的Transformer视觉模型,超强的提升

  • 💡🎈☁️:改进YOLOv7系列:首发结合最新Centralized Feature Pyramid集中特征金字塔,通过COCO数据集验证强势涨点

  • 💡🎈☁️:改进YOLOv7系列:首发结合 RepLKNet 构建 最新 RepLKDeXt 结构|CVPR2022 超大卷积核, 越大越暴力,大到31x31, 涨点高效

  • 💡🎈☁️:改进YOLOv5系列:4.YOLOv5_最新MobileOne结构换Backbone修改,超轻量型架构,移动端仅需1ms推理!苹果最新移动端高效主干网络

  • 💡🎈☁️:改进YOLOv7系列:最新HorNet结合YOLOv7应用! | 新增 HorBc结构,多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互


文章目录

    • 最新创新点改进博客推荐
    • YOLOv5网络
      • 1.YOLOv5s标准网络配置
      • 2.增加Swin Transformer小目标检测头配置
    • 3.核心代码
      • 4.运行

在这里插入图片描述

YOLOv5网络

1.YOLOv5s标准网络配置

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

2.增加Swin Transformer小目标检测头配置

增加yolov5s6_swin.yaml文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [19,27,  44,40,  38,94]  # P3/8
  - [96,68,  86,152,  180,137]  # P4/16
  - [140,301,  303,264,  238,542]  # P5/32
  - [436,615,  739,380,  925,792]  # P6/64

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [768]],
   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 11
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [768, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
   [-1, 3, C3, [768, False]],  # 15

   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 19

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 20], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 16], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)

   [-1, 1, Conv, [768, 3, 2]],
   [[-1, 12], 1, Concat, [1]],  # cat head P6
   [-1, 3, C3STR, [512]],  # 32 (P6/64-xlarge)

   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
  ]

3.核心代码

参考本博主的这篇:👉改进YOLOv5系列:3.YOLOv5结合Swin Transformer结构,ICCV 2021最佳论文 使用 Shifted Windows 的分层视觉转换器
里面的common.py配置部分

class SwinTransformerBlock(nn.Module):
    def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)

        # remove input_resolution
        self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
                                 shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])

    def forward(self, x):
        if self.conv is not None:
            x = self.conv(x)
        x = self.blocks(x)
        return x
class WindowAttention(nn.Module):

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        nn.init.normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):

        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # print(attn.dtype, v.dtype)
        try:
            x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        except:
            #print(attn.dtype, v.dtype)
            x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class Mlp(nn.Module):

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class SwinTransformerLayer(nn.Module):

    def __init__(self, dim, num_heads, window_size=8, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        # if min(self.input_resolution) <= self.window_size:
        #     # if window size is larger than input resolution, we don't partition windows
        #     self.shift_size = 0
        #     self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def create_mask(self, H, W):
        # calculate attention mask for SW-MSA
        img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        return attn_mask

    def forward(self, x):
        # reshape x[b c h w] to x[b l c]
        _, _, H_, W_ = x.shape

        Padding = False
        if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
            Padding = True
            # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
            pad_r = (self.window_size - W_ % self.window_size) % self.window_size
            pad_b = (self.window_size - H_ % self.window_size) % self.window_size
            x = F.pad(x, (0, pad_r, 0, pad_b))

        # print('2', x.shape)
        B, C, H, W = x.shape
        L = H * W
        x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)  # b, L, c

        # create mask from init to forward
        if self.shift_size > 0:
            attn_mask = self.create_mask(H, W).to(x.device)
        else:
            attn_mask = None

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W)  # b c h w

        if Padding:
            x = x[:, :, :H_, :W_]  # reverse padding

        return x

class C3STR(C3):
    # C3 module with SwinTransformerBlock()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        num_heads = c_ // 32
        self.m = SwinTransformerBlock(c_, c_, num_heads, n)

4.运行

python train.py --cfg yolov5s6_swin.yaml

http://www.niftyadmin.cn/n/899.html

相关文章

Guitar Pro8最新版安装教程学吉他打谱必备工具

Guitar Pro以 GTP 结尾的曲谱文件都必须用 Guitar Pro 才能打开。Guitar Pro 凭借着其便利的制谱和读曲谱环境&#xff0c;在各大谱库论坛里都占据着一席之地&#xff0c;喜欢吉他的朋友一定略有耳闻。Guitar Pro 是 Windows 和 Mac OS 上可用的软件程序&#xff0c;允许所有音…

文献阅读(41)—— 基于多路CNN和机器学习分类器对糖网分类

基于多路CNN和机器学习分类器对糖网分类 Diabetic retinopathy classifcation based on multipath CNN and machine learning classifers IF 7.099/Q1 感觉好眼熟&#xff0c;和第34篇的思路相同——文献阅读&#xff08;34&#xff09;——眼底照使用轻量级CNN用于糖网分级…

ast语法树初探

前端开发中&#xff0c;使用了很多工具&#xff0c;譬如webpack、eslint来提升研发效率&#xff0c;但我们并不知道这些工具的实现原理。基于这些工具的核心都是抽象语法树&#xff0c;那我们就从抽象语法树开始理解底层原理的新世界吧。 一、抽象语法树是什么 顾名思义&…

2022-10-26 Unity 2进制1——文件操作

文章目录一、各类型数据和字节数据相互转换二、文件操作三、文件操作 File 类的常用内容​ 2 进制文件读写的本质就是通过将各类型变量转换为字节数组&#xff0c;将字节数组直接存储到文件中&#xff0c;一般人是看不懂存储的数据的​ 不仅可以节约存储空间&#xff0c;提升效…

AntDB-M设计之CheckPoint

1.引 言 数据库服务能力提升是一项系统性的工程&#xff0c;在不同的应用场景下&#xff0c;用户对于数据库各项能力的关注点也不同&#xff0c;如&#xff1a;读写延迟、吞吐量、扩展性、可靠性、可用性等等。国内不少数据库系统通过系统架构优化、硬件设备升级等方式&…

内网渗透体系学习4

在内网渗透中&#xff0c;当测试人员获取某台机器的控制权后&#xff0c;会以被攻陷的主机为跳板进 行横向渗透&#xff0c;进一步扩大所掌控的资源范围。但是横向渗透中的很多攻击方法都需要先 获取到域内用户的密码或哈希值才能进行&#xff0c;如哈希传递攻击、票据传递攻击…

YoloV5+ECVBlock:基于YoloV5-ECVBlock的小目标检测训练

目录 1、前言 2、数据集 3、添加ECVBlock 4、BackBone+ECVBlock 5、Head+ECVBlock 6、训练结果

HTML基础

目录 一&#xff0c;HTML结构 1.认识HTML标签 2.HTML文件基本结构 3.标签层次结构 &#xff08;父子&兄弟&#xff09; 二&#xff0c;HTML常见标签 1.注释标签 2.标题标签&#xff1a;h1~h6 3.段落标签&#xff1a;p 4.换行标签&#xff1a;br 5.格式化标签 (…