机器学习笔记——常用损失函数

news/2025/2/21 7:30:19

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的损失函数和代价函数,各函数的使用场景。

在这里插入图片描述

文章目录

  • 损失函数
    • 一、回归问题中的损失函数
      • 1. 均方误差(Mean Squared Error, MSE)
      • 2. 平均绝对误差(Mean Absolute Error, MAE)
      • 3. 对数余弦损失(Log-Cosh Loss)
      • 4. Huber 损失(Huber Loss)
      • 5. 平均平方对数误差(Mean Squared Logarithmic Error, MSLE)
      • 总结
    • 二、分类问题中的损失函数
      • 1. 0-1 损失(0-1 Loss)
      • 2. 对数损失(Log Loss)或交叉熵损失(Cross-Entropy Loss)
        • 二分类问题
        • 多分类问题
      • 3. Focal 损失(Focal Loss)
      • 4. Hinge 损失(合页损失)
      • 5. Kullback-Leibler 散度(KL Divergence)
      • 总结

损失函数

一、回归问题中的损失函数

1. 均方误差(Mean Squared Error, MSE)

定义

MSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2

  • 描述:MSE 衡量的是预测值和真实值之间的平方误差的平均值。对较大的误差会进行更大的惩罚,因此它对异常值(outliers)非常敏感。
  • 应用场景:线性回归、岭回归等模型的损失函数。
  • 优点:简单易于理解,容易求导和计算。
  • 缺点对异常值敏感,可能导致模型被少数异常样本主导。

2. 平均绝对误差(Mean Absolute Error, MAE)

定义
MAE = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ \text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| MAE=n1i=1nyiy^i

  • 描述:MAE 衡量的是预测值和真实值之间的绝对误差的平均值。它对每个误差的惩罚是线性的,因此对异常值的惩罚不如 MSE 严重。
  • 应用场景:在对异常值不敏感的回归任务中使用。
  • 优点对异常值不敏感,能够更加稳定地反映模型性能。
  • 缺点:在优化过程中,绝对值函数不可导,求解困难。

3. 对数余弦损失(Log-Cosh Loss)

定义
Log-Cosh Loss = 1 n ∑ i = 1 n log ⁡ ( cosh ⁡ ( y i − y ^ i ) ) \text{Log-Cosh Loss} = \frac{1}{n} \sum_{i=1}^{n} \log\left(\cosh\left(y_i - \hat{y}_i\right)\right) Log-Cosh Loss=n1i=1nlog(cosh(yiy^i))

说明: cosh ⁡ ( x ) \cosh(x) cosh(x): 双曲余弦函数,公式为 cosh ⁡ ( x ) = e x + e − x 2 \cosh(x) = \frac{e^x + e^{-x}}{2} cosh(x)=2ex+ex

  • 描述:对数余弦损失是Huber 损失的变体,它的行为类似于 MAE,同时对大误差有更小的增长率。
  • 应用场景:适用于异常值影响较大的回归任务。
  • 优点:具有平滑性,易于求导对小误差敏感对大误差鲁棒
  • 缺点:相比其他损失函数计算复杂度较高。

4. Huber 损失(Huber Loss)

定义
L ( y i , y ^ i ) = { 1 2 ( y i − y ^ i ) 2 if  ∣ y i − y ^ i ∣ ≤ δ , δ ⋅ ∣ y i − y ^ i ∣ − 1 2 δ 2 if  ∣ y i − y ^ i ∣ > δ . L(y_i, \hat{y}_i) = \begin{cases} \frac{1}{2} (y_i - \hat{y}_i)^2 & \text{if } |y_i - \hat{y}_i| \leq \delta, \\ \delta \cdot |y_i - \hat{y}_i| - \frac{1}{2} \delta^2 & \text{if } |y_i - \hat{y}_i| > \delta. \end{cases} L(yi,y^i)={21(yiy^i)2δyiy^i21δ2if yiy^iδ,if yiy^i>δ.

  • δ \delta δ: 超参数,定义切换 MSE 和 MAE 的阈值。
  • ∣ y i − y ^ i ∣ |y_i - \hat{y}_i| yiy^i: 误差的绝对值。
  • 描述:Huber 损失是MSE 和 MAE 的折中。对于小误差,使用 MSE;对于大误差,使用 MAE,从而对异常值有一定的鲁棒性。
  • 应用场景:回归问题中存在异常值,但又不希望过于忽略异常值的场景。
  • 优点对小误差敏感,同时对大误差具有一定的抗干扰性
  • 缺点:参数 ( δ \delta δ) 需要手动调节,不同数据集效果不同。

5. 平均平方对数误差(Mean Squared Logarithmic Error, MSLE)

定义
MSLE = 1 n ∑ i = 1 n ( log ⁡ ( 1 + y i ) − log ⁡ ( 1 + y ^ i ) ) 2 \text{MSLE} = \frac{1}{n} \sum_{i=1}^{n} \left( \log(1 + y_i) - \log(1 + \hat{y}_i) \right)^2 MSLE=n1i=1n(log(1+yi)log(1+y^i))2

  • n n n: 数据点的总数。
  • y i y_i yi: 第 i i i 个真实值(必须为非负数)。
  • y ^ i \hat{y}_i y^i: 第 i i i 个预测值(必须为非负数)。
  • log ⁡ ( 1 + x ) \log(1 + x) log(1+x): 对 x x x 加 1 后取自然对数,用于平滑较小的值和避免对 0 的对数操作。
  • 描述:MSLE 用于处理目标值差异较大有显著指数增长趋势的情况。它更关注相对误差,而非绝对误差。
  • 应用场景:如人口增长预测、市场销量预测等场景。
  • 优点:对大数值的预测更稳定,对目标值的比例关系有更好的衡量。
  • 缺点:当目标值非常小时,惩罚效果不明显。

总结

损失函数描述应用场景优点缺点
均方误差 (MSE)衡量预测值和真实值之间平方误差的平均值,对较大误差进行更大惩罚。线性回归、岭回归等简单易于理解,容易求导。对异常值敏感
平均绝对误差 (MAE)衡量预测值和真实值之间绝对误差的平均值对异常值不敏感的回归任务对异常值不敏感,反映模型性能更稳定。优化困难,绝对值函数不可导
对数余弦损失 (Log-Cosh)Huber 损失的变体,既能捕捉小误差,也对大误差有更小的增长率异常值影响较大的回归任务平滑性好,易于求导,适应大误差和小误差。计算复杂度高。
Huber 损失 (Huber Loss)结合MSE和MAE,小误差时使用 MSE,大误差时使用 MAE,平衡异常值的影响。存在异常值但不希望完全忽略的场景对小误差敏感,对大误差有抗干扰性。需调节参数 (delta)。
平均平方对数误差 (MSLE)衡量目标值差异大且有指数增长趋势的情况,关注相对误差而非绝对误差。人口增长预测、市场销量预测等对大数值预测更稳定,适应有比例关系的数据对极小值目标效果不佳。

二、分类问题中的损失函数

1. 0-1 损失(0-1 Loss)

定义

L ( y , y ^ ) = { 0 , if  y = y ^ , 1 , if  y ≠ y ^ . L_(y, \hat{y}) = \begin{cases} 0, & \text{if } y = \hat{y}, \\ 1, & \text{if } y \neq \hat{y}. \end{cases} L(y,y^)={0,1,if y=y^,if y=y^.

  • 描述:0-1 损失表示分类是否正确0 为正确分类,1 为错误分类。它无法直接用于模型优化,只能用于评价模型性能。
  • 应用场景:模型性能的评估,如准确率(Accuracy)的计算。
  • 优点:简单直观,能够清晰判断分类是否正确。
  • 缺点不可导,无法用于梯度优化

2. 对数损失(Log Loss)或交叉熵损失(Cross-Entropy Loss)

  • 描述:交叉熵损失衡量的是预测分布和真实分布之间的距离。在二分类与 Sigmoid 函数结合;在多分类与 Softmax 函数结合
  • 应用场景:广泛用于逻辑回归、神经网络等分类任务。
  • 优点:能够很好地度量概率分布之间的差异,梯度计算简单。
  • 缺点对数据不平衡较为敏感
二分类问题

在二分类问题中,交叉熵损失衡量真实标签 ( y y y ) 和预测概率 ( y ^ \hat{y} y^ ) 之间的差异。公式为:

L ( y , y ^ ) = − [ y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ] L(y, \hat{y}) = - \left[ y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}) \right] L(y,y^)=[ylog(y^)+(1y)log(1y^)]
符号说明

  • y ∈ { 0 , 1 } y \in \{0, 1\} y{0,1}:真实标签(0 表示负类,1 表示正类)。
  • y ^ ∈ [ 0 , 1 ] \hat{y} \in [0, 1] y^[0,1]:预测为正类的概率。
多分类问题

对于 k k k 个类别的多分类问题,交叉熵损失扩展为多个输出类的加权损失,公式为:

L ( y , y ^ ) = − ∑ i = 1 k y i log ⁡ ( y ^ i ) L(y, \hat{y}) = - \sum_{i=1}^{k} y_i \log(\hat{y}_i) L(y,y^)=i=1kyilog(y^i)

符号说明

  • k k k:类别数量。
  • y i ∈ { 0 , 1 } y_i \in \{0, 1\} yi{0,1}:第 i i i 类的真实标签,使用独热编码表示(只有一个值为 1,其余为 0)。
  • y ^ i ∈ [ 0 , 1 ] \hat{y}_i \in [0, 1] y^i[0,1]:模型预测的第 i i i 类的概率,通常通过 softmax 函数获得。

Sigmoid 函数:

  • 公式:
    σ ( z ) = 1 1 + e − z \sigma(z)=\frac1{1+e^{-z}} σ(z)=1+ez1
  • 其中, z z z 是模型的线性输出,即预测值。
  • Sigmoid 函数将模型的线性输出 z z z转化为一个介于 0 和 1 之间的值,表示属于类别 1 的概率。

交叉熵损失:

  • 在二分类任务中,真实标签 y y y通常取 0(负类)或1(正类)。
  • 交叉熵损失的公式为 L o s s = − [ y ⋅ log ⁡ ( p ) + ( 1 − y ) ⋅ log ⁡ ( 1 − p ) ] \mathrm{Loss}=-\left[y\cdot\log(p)+(1-y)\cdot\log(1-p)\right] Loss=[ylog(p)+(1y)log(1p)]
    • 其中, p = σ ( z ) p=\sigma(z) p=σ(z)是经过 Sigmoid 函数后模型预测属于类别 1 的概率。

Softmax 函数:

  • 公式: S o f t m a x ( z i ) = e z i ∑ j e z j \mathrm{Softmax}(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}} Softmax(zi)=jezjezi
  • 其中, z i z_i zi 是第 i i i 个类别的得分, ∑ j e z j \sum_j e^{z_j} jezj 是所有类别的得分的指数和。
  • Softmax 函数将每个类别的得分 z i z_i zi 转化为一个概率 p i p_i pi,即样本属于第 i i i 个类别的概率。

交叉熵损失:

  • 在多分类任务中,真实标签 y y y 是一个 one-hot 编码向量,即样本的真实类别的概率是 1,其他类别的概率是 0。
  • 交叉熵损失的公式: Loss = − ∑ i y i ⋅ log ⁡ ( p i ) \text{Loss} = -\sum_i y_i \cdot \log(p_i) Loss=iyilog(pi)
    • 其中, p i p_i pi 是 Softmax 函数输出的属于类别 i i i 的概率, y i y_i yi 是真实的类别标签,通常为 0 或 1。

3. Focal 损失(Focal Loss)

定义
Focal Loss = − α t ( 1 − p ^ t ) γ log ⁡ ( p ^ t ) \text{Focal Loss} = -\alpha_t (1 - \hat{p}_t)^\gamma \log(\hat{p}_t) Focal Loss=αt(1p^t)γlog(p^t)

  • 其中:
    • p ^ t \hat{p}_t p^t 是模型对正确类别的预测概率。
    • α t \alpha_t αt 是类别平衡权重,用来调整类别不平衡问题, α t ∈ [ 0 , 1 ] \alpha_t \in [0, 1] αt[0,1],通常用于为不同类别分配不同的权重。
    • γ \gamma γ 是调节因子,控制模型对难分类样本的关注程度,常取值为 0 到 5 之间,通常选取 γ = 2 \gamma = 2 γ=2 效果较好。

注:t 是该样本的真实类别标签

  1. p ^ t \hat{p}_{t} p^t: 这是模型对样本真实类别 t t t 的预测概率。假设样本属于类别 t t t,则 p ^ t \hat{p}_{t} p^t 就是模型对类别 t t t 的预测概率。如果是二分类任务, t t t 为 1 代表正类,为 0 代表负类;如果是多分类任务, t t t 是类别的索引。
  2. α t \alpha_{t} αt: 这是类别 t t t 的权重系数。通过 t t t,可以为当前样本所属类别 t t t 分配一个权重 α t \alpha_{t} αt。对于不平衡数据集来说, α t \alpha_{t} αt 通常设置为少数类的权重大,主要用来调整损失函数对不同类别样本的关注程度。
  • 描述:Focal 损失是对交叉熵损失的改进,用于解决类别不平衡问题。通过调节参数 ( γ \gamma γ ) 和 ( α \alpha α ),它增加了对困难样本的关注,降低了对易分类样本的影响。
  • 应用场景:目标检测中的单阶段检测器(如 RetinaNet),以及其他类别不平衡的分类问题。
  • 优点:有效解决类别不平衡问题,增强模型对困难样本的关注。
  • 缺点:参数选择复杂,训练时间较长。

4. Hinge 损失(合页损失)

定义:对于二分类问题:
L ( y , y ^ ) = max ⁡ ( 0 , 1 − y ⋅ y ^ ) L(y, \hat{y}) = \max(0, 1 - y \cdot \hat{y}) L(y,y^)=max(0,1yy^)

其中, y ∈ { − 1 , 1 } y \in \{ -1, 1 \} y{1,1} y ^ \hat{y} y^是模型的预测输出。

  • 描述:Hinge 损失用于支持向量机(SVM)中。它在样本被正确分类且间隔大于 1 时,损失为 0;否则损失为 1。旨在最大化样本的分类间隔。
  • 应用场景:线性支持向量机、核支持向量机等。
  • 优点:有助于最大化分类间隔,提高模型的泛化能力。
  • 缺点:对于误差大的样本损失增长过快。

5. Kullback-Leibler 散度(KL Divergence)

定义
K L ( p ∥ q ) = ∑ i p ( x i ) log ⁡ p ( x i ) q ( x i ) KL(p \parallel q) = \sum_i p(x_i) \log \frac{p(x_i)}{q(x_i)} KL(pq)=ip(xi)logq(xi)p(xi)

  • 描述:KL 散度衡量两个概率分布之间的差异,常用于无监督学习中的聚类分析
  • 应用场景:概率模型的优化,如变分自编码器(VAE)、生成对抗网络(GAN)中的判别模型。
  • 优点:对概率分布之间的微小差异非常敏感
  • 缺点:对稀疏分布的概率模型不稳定

总结

损失函数描述应用场景优点缺点
0-1 损失 (0-1 Loss)分类正确为 0,错误为 1,用于衡量分类是否正确。准确率等分类性能评估简单直观。不可导,无法用于优化
交叉熵损失 (Cross-Entropy)衡量预测分布和真实分布之间的距离,二分类结合 Sigmoid,多分类结合 Softmax。逻辑回归、神经网络等分类任务很好地衡量概率分布差异,梯度计算简单。对数据不平衡敏感
Focal 损失 (Focal Loss)交叉熵的改进,通过调节 ( gamma ) 和 ( alpha ),增加对困难样本的关注,减少易分类样本影响,解决类别不平衡问题。类别不平衡问题,如目标检测 (RetinaNet)增强对困难样本的关注,解决类别不平衡参数选择复杂,训练时间较长。
Hinge 损失 (合页损失)用于 SVM,正确分类且间隔大于 1 时损失为 0,旨在最大化分类间隔。线性 SVM、核 SVM提高泛化能力,有助于最大化分类间隔对误差大的样本损失增长快。
KL 散度 (KL Divergence)衡量两个概率分布的差异,常用于无监督学习中的聚类分析。概率模型优化,如 VAE、GAN概率分布的差异敏感稀疏分布不稳定

http://www.niftyadmin.cn/n/5860457.html

相关文章

MyBatis框架七:缓存

精心整理了最新的面试资料,有需要的可以自行获取 点击前往百度网盘获取 点击前往夸克网盘获取 MyBatis缓存介绍 正如大多数持久层框架一样,MyBatis 同样提供了一级缓存和二级缓存的支持 1、一级缓存: 基于PerpetualCache 的 HashMap本地缓存&#xf…

tp6上传文件大小超过了最大值+验证文件上传大小和格式函数

问题: 最近用tp6的文件上传方法上传文件时报文件过大错误。如下所示: $file $this->request->file(file);{"code": 1,"msg": "上传文件大小超过了最大值!","data": {"code": 1,&q…

网络协议相关知识有哪些?

前言 网络协议的基础是OSI和TCP/IP模型,这两个模型是理解协议分层的关键。 正文(仅是个人理解,如有遗漏望海涵) 网络协议是网络中设备间通信的规则和标准,涉及数据传输、路由、错误控制等多个方面。以下是网络协议相关知识的系统梳理: 一、网络协议分层模型 1、OSI七…

5.5 Soft Prompt技术:任务特定微调的新范式

Soft Prompt技术:任务特定微调的新范式 一、Soft Prompt技术全景图 mindmap root((Soft Prompt)) Prefix Tuning 连续向量优化 层级前缀插入 Prompt Tuning 可学习提示向量 任务特定初始化 P-Tuning 可微提示优化 双向提示设计 Soft Prompt的核心优势: 参数高效…

RK3568开发板/电脑/ubuntu处于同一网段互通

1.查看无线局域网适配器WLAN winR输入cmd打开电脑终端输入ipconfig或arp -a查看无线局域网IP地址,这就是WIFI. 这里的IPv4是192.168.0.147,默认网关是192.168.0.1,根据网关地址配以太网IP, ubuntu的IP,和rk3568的IP。 且IP范围为192.168.…

ceph HEALTH_WARN clock skew detected on mon.f, mon.o, mon.p, mon.q

问题 ceph health detail[WRN] MON_CLOCK_SKEW: clock skew detected on mon.f, mon.o, mon.p, mon.qmon.f clock skew 0.243128s > max 0.05s (latency 0.000836159s)mon.o clock skew 16.249s > max 0.05s (latency 0<

K8S下redis哨兵集群使用secret隐藏configmap内明文密码方案详解

#作者&#xff1a;朱雷 文章目录 一、背景环境及方案说明1.1、环境说明1.2、方案一&#xff1a;使用配置文件设置密码1.3、方案二&#xff1a;使用args 的命令行传参设置密码 二、redis secret configmap deployment参考2.1 创建secret-redis.yaml参考2.2 修改configmap配置参…

聚焦于机器人研究,提出 FuSe 方法,通过语言锚定对通用机器人策略进行微调 视觉、触觉、听觉

聚焦于机器人研究,提出 FuSe 方法,通过语言锚定对通用机器人策略进行微调,利用多模态传感器提升性能,在多种任务中表现优异,具备跨模态推理能力。 研究背景:与世界交互需多感官协作,当前先进通用机器人策略多依赖视觉和本体感受数据训练,忽略其他模态信息。方法:FuSe …